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NUMERICAL CALCULATIONS OF SUPERSONIC

UNDEREXPANDED JETS IN A COCURRENT FLOW

WITH THE USE OF PARABOLIZED NAVIER–STOKES EQUATIONS

UDC 532.526A. P. Makasheva and A. Zh. Naimanova

Results of a numerical study of three-dimensional supersonic jets propagating in a cocurrent flow
are described. Averaged parabolized Navier–Stokes equations are solved numerically on the basis of a
developed scheme, which allows calculations in supersonic and subsonic flow regions to be performed
in a single manner. A jet flow with a cocurrent flow Mach number 0.05 � M∞ � 7.00 is studied, and
its effect on the structure of the mixing layer is demonstrated. The calculated results are compared
with available experimental and numerical data.
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Introduction. There are many experimental and theoretical investigations dealing with the structure of
supersonic jet flows and its dependence on the jet pressure ratio and initial values of the Mach number, and
temperature [1–6]. In particular, propagation of a system of supersonic jets in cocurrent supersonic and hypersonic
flows has been well studied. Jet flows with moderate Mach numbers are also of interest for practice. The effect
of the Mach number of the cocurrent flow M∞ and the jet pressure ratio n = p0/p∞ (p0 and p∞ are the pressure
in the jet and in the cocurrent flow, respectively) on the supersonic jet flow was studied experimentally in [4].
It was demonstrated that there are qualitative and quantitative differences in the structure of the initial part of
underexpanded jets for M∞ = 0–2 and M∞ > 2. In addition, disappearance of the central (normal) shock at
M∞ > 2 was observed; the characteristic length of the initial part of the jet (distance from the nozzle exit) and the
diameters of the barrel and central shock waves were found.

The main problem in the numerical solution of these problems is the presence of oscillations caused not only
by discontinuities in the initial data, but also by the fact that the original system of equations is a system of a
hyperbolic–parabolic type in supersonic flows and a system of an elliptic type in subsonic flows. For the equations
to remain of a hyperbolic–parabolic type, the problem has to be regularized. The research performed in [2, 3] has to
be noted among theoretical papers. Ishii et al. [2] considered the flow structure with exhaustion of a sonic jet into
a cocurrent flow; they showed that the presence of normal shock waves (Mach disks) depends on the jet pressure
ratio. No Mach disks arise at moderate jet pressure ratios (n = 1.5–2.0), and there is only a system of shock waves
(this result was not confirmed by experiments performed in [4]). Abdol-Hamid and Wilmoth [1] assumed that the
shock-wave structure is mainly affected by large-scale vortices in the jet, though it is known that viscous processes
do not dominate at the initial part of the jet.

The goal of the present activities was a numerical study of the shock-wave structure of supersonic jets
exhausting into a supersonic (subsonic) flow.

Formulation of the Problem. We consider the exhaustion of a system of three-dimensional viscous
supersonic turbulent jets from circular nozzles into a cocurrent flow (Fig. 1). The jets and the cocurrent flow
propagate in the x direction, and the y and z axes are perpendicular to the flow. The jets are arranged symmetrically
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Fig. 1. Schematic pattern of the flow.

in both horizontal and vertical directions. As the system of jets is periodic, we consider a square with the side of
length L bounded by the axes of symmetry of the jet and the flow. We find the solution of the problem in the
hatched region OKMN (Fig. 1), with the removed domain being replaced by the conditions of symmetry.

The original equations are the parabolized Navier–Stokes equations for the averaged flow, which are written
in dimensionless form:
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+
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where

p = (γ − 1)
(
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a

, μ = μl + μt,

u, v, and w are the velocity components in the streamwise and crossflow directions, ρ is the density, p is the pressure,
T is the temperature, Et is the total energy, γ = cp/cv is the ratio of specific heats, cp and cv are the specific heats
at constant pressure and constant volume, respectively, Ma is the Mach number of the jet, Re is the Reynolds
number, Pr is the Prandtl number, μt is the turbulent viscosity, and μl is the molecular viscosity calculated by
Sutherland’s formula μl = T 3/2(1 + S1)/(T + S1), where S1 = 110/T0.

The characteristics at the nozzle exit ρ0, u0, and T0 are used as scale parameters, the reference scale for
pressure and total energy is ρ0u

2
0, and the x, y, and z coordinates are normalized to the nozzle radius r0. In what

follows, the jet parameters and the flow parameters are indicated by the subscripts 0 and ∞, respectively.
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In the calculations, we used two algebraic models of turbulence, which take into account the mixing length.
In the initial part of exhaustion of a supersonic jet into a subsonic cocurrent flow and in the entire flow region in
the case of streamwise injection of a supersonic jet into a supersonic cocurrent flow, the turbulent viscosity was
calculated by the formula [7]

μt = Cρl(umax − umin), (2)

where l = (umax − umin)/(|∂u/∂y|max + |∂u/∂z|max) is the mixing length and C is an empirical coefficient.
The turbulent viscosity in the main part of the flow of a supersonic jet in a subsonic cocurrent flow was

determined by the Baldwin–Lomax algebraic model of turbulence

μt = Ikρl2|Ω|,
where Ω is the vorticity and Ik is the limiter.

The initial and boundary conditions have the following form:
— for x = 0 in the jet,

u = 1, T = 1, ρ = 1, v = w = 0,

— for x = 0 in the flow,
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Ma
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√
T , p =

1
γnM2

a

, v = w = 0;

— for x > 0,
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∂u
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=
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∂z
=
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∂z
=

∂T

∂z
= 0.

Method of the Solution. As the original equations include a streamwise pressure gradient, the distur-
bances can propagate upstream through subsonic regions of the flow field. For this reason, the marching method
with respect to the spatial coordinate becomes ill-conditioned, which often leads to emergence of diverging solutions.
There are several methods to eliminate potentially growing solutions. Similar to [8], the flow vector E is split in
the present work into two components
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. (3)

According to Eqs. (3), there appears a parameter ω as a multiplier at the pressure gradient in the equation
of motion along the streamwise coordinate x. An analysis of eigenvalues suggests that system (3) in a system of the
hyperbolic–parabolic type in subsonic regions if ω � f(Mx) = σγM2

x and in supersonic regions if ω = 1 (Mx = u/c is
the local Mach number).

With allowance for Eqs. (3), system (1) in the generalized coordinate system becomes

∂E∗

∂ξ
+

∂Ep

∂ξ
+

∂ (F − Fv)
∂η

+
∂ (G − Gv)

∂ζ
= 0, (4)

where ξ = ξ(x), η = η(y), ζ = ζ(z), E = J−1E, F = ηyJ−1F , G = ζzJ
−1G, Fv = ηyJ−1Fv, Gv = ζzJ

−1Gv, and
J = ∂ (ξ, η, ζ)/∂ (x, y, z) is the Jacobian of transformation.

System (4) was solved by a shock-capturing marching method along the coordinate ξ with the use of a
two-stage splitting scheme: flow transfer was assumed to be performed through convection at the first stage and
through diffusion at the second stage.

Stage 1. Calculation of intermediate values of the flows:

E∗i − E∗n

Δξ
= −∂F n

∂η
− ∂Gn

∂ζ
− ∂Ep

∂ξ
. (5)
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Stage 2. Calculation of the final values of the sought quantities:

An(Un+1 − U∗i)
Δξ

=
∂F n+1

v

∂η
+

∂Gn+1
v

∂ζ
(6)

(U = [ρ, ρu, ρv, ρw, Et]t and A = ∂E∗/∂U is the Jacobi matrix [8]).
The numerical solution of Eq. (5) for the flow E∗i was obtained by the explicit MacCormack scheme [8]

(i = 2) with the second order of accuracy in terms of spatial coordinates or by the three-step Warming–Kutler–
Lomax scheme [8] (i = 3) with the third order of accuracy. After calculating E∗i, we determine the components
of the vector U∗i from the first equation in system (3) (for simplicity, the superscript is further omitted). For
this purpose, we have to solve two systems, each consisting of five nonlinear algebraic equations for supersonic and
subsonic regions. For the supersonic region, the system of equations has the form
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The solution of system (7) with respect to the vector U is written as

U1 =
γE2E

2
1 − E2

1

√
(γE2)2 − (γ2 − 1)(2E1E5 − E2

3 − E2
4 )

(γ − 1)(2E5E1 − E2
3 − E2

4 )
,

U2 = E1, U3 =
E3U1

E1
, U4 =

E4U1

E1
, U5 =

1
U1

(E5U
2
1

E1
− (E2U1 − E2

1)
)
.

Here the discriminant equals zero at Mx = 1.
In determining the components of the vector U in the subsonic region of the flow, the sought system of

equations is written in the form
⎛
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At the second stage, system (6) is solved by the three-step matrix sweep method.
At the last stage, the flow vector U in the vicinity of shock waves is explicitly smoothed to suppress solution

oscillations, similar to [9]. The smoothing term is proportional to (Δη)4|pηη|Uηη and (Δζ)4|pζζ |Uζζ ; its effect is
most significant in flow regions with high pressure gradients. As is [9], the smoothing coefficient was varied in the
range from 0 to 0.03.

Calculation Results. The parameters of coordinate transformation have the form [8]

ξ = x, η = By +
1
τ

arsinh
[( y

y′ − 1
)

sinh (τBy)
]
,

where

By =
1
2τ
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( 1 + (eτ −1)(y′/L)

1 + (e−τ −1)(y′/L)

)
,
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0 < τ < ∞ is the extension parameter, and y′ is the point with respect to which the grid is condensed. The
transformation for ζ = ζ(z) is similar to η = η(y). To conserve the exact values on the jet boundary, the internal
points in the vicinity of this boundary are redefined, similar to [10], by bilinear (if there is only one sought internal
point) or linear (two points) interpolation. The calculations were performed in a domain with the transverse size
of 7.5 × 7.5 on 100 × 100 and 200 × 200 grids. The step along the marching coordinate was varied in the range
Δξ = 0.0006–0.0015, and the transformation parameters were τ = 0.1, y′ = 1, and z′ = 1. The coefficient C = 0.05
in Eq. (2) was chosen on the basis of test calculations. The numerical study was performed with the following values
of the characteristic parameters: γ = 1.4, 1 � Ma � 3, 0.05 � M∞ � 7.00, 1 � n � 10, and Re = 104. System (5)
was solved by the two-step MacCormack method.

The calculation method proposed was tested by the problem of exhaustion of a system of plane supersonic
jets of an ideal gas into a cocurrent supersonic flow with the parameters Ma = 3, M∞ = 5, n = 10, and T0 = T∞ = 1,
and by the problem of exhaustion of a turbulent axisymmetric supersonic jet into a subsonic cocurrent flow (Ma = 3,
M∞ = 0.05, n = 1, and T0 = T∞ = 1). Hereinafter, the method of global iterations was additionally used if the
problems considered had vast subsonic regions. The initial approximation of the pressure distribution in the entire
flow region was defined. Then, the initial equations were solved for the known pressure field by the marching
algorithm (5). The pressure used for the next iteration was preserved at each step. The calculations were continued
until a necessary accuracy of approximation was reached, i.e., until the change in pressure between the neighboring
iterations became insignificant:

|pn+1,k+1 − pn+1,k| < δp � 1

(δp = 10−4).
The calculated results are in good agreement with the experimental data [11], and only two global iterations

were needed.
The spatial structure of a system of underexpanded supersonic jets exhausting into a supersonic cocurrent

flow is shown in Fig. 2. As the jet propagates downstream (from the initial region into the cocurrent flow with
a lower pressure), a shock wave starts propagating, which then becomes reflected from the centerline. As the
Mach number of the cocurrent flow increases, the velocity of shock-wave propagation decreases: in the cross section
x = 28.7, the shock wave reaches the centerline at M∞ = 7 (right picture in Fig. 2d), whereas it experiences a
secondary reflection from the jet centerline at M∞ = 2 (left picture in Fig. 2d). As a consequence, different spatial
patterns of the flow arise, caused by interaction of waves reflected from the y and z axes (cf. left picture in Fig. 2d
and right picture in Fig. 2e).

The analysis of the fields of the Mach contours of streamwise velocities suggests that the jet boundary has
a barrel shape at M∞ = 2 (see left pictures in Figs. 2f and 2g), whereas the jet width increases along the x axis
almost linearly with increasing distance from the nozzle exit at M∞ = 7 (see right pictures in Figs. 2f and 2g).

It is known that the barrel shape of the jet boundary is typical of supersonic jets exhausting into a subsonic
cocurrent flow. Therefore, we calculated the exhaustion of a single supersonic turbulent circular jet into a subsonic
cocurrent flow with the parameters Ma = 2, M∞ = 0.05–0.25, n = 1.45, and T0 = T∞ = 1. The pressure distribution
in the plane xy (Fig. 3a) shows that a bunch of expansion waves arise near the nozzle edge because of the difference
in pressure in the jet and the cocurrent flow. In passing through these expansion waves, the pressure decreases,
and the pressure in the greatest cross section of the jet becomes lower than the ambient pressure. The streamline
become deflected from the jet centerline, i.e., the jet becomes expanded (Fig. 3b). Then the expansion waves reach
the jet boundary and become reflected from it in the form of compression waves; as a result, the pressure in the
jet increases. In what follows, as is shown in Fig. 3a, the spectrum of the wave is repeated, and the jet boundary
(M = 0.25) acquires a wavy (barrel) shape.

Apparently, the barrel shape of the jet boundary for M∞ � 2 (see left picture in Fig. 2) is caused by the fact
that the intensity of waves reflected from the jet boundary is of the same order as the intensity of waves reflected
from the domain under consideration.

Figure 3c shows the pressure distribution on the jet centerline, which is compared with the calculated and
experimental data of [1]. It should be noted that the code developed in [1] allows calculations for M∞ = 0.25;
therefore, the results of the present work and of [1] are compared at M∞ = 0.25. The results in Fig. 3c are in good
agreement as a whole, through there appears some difference between the calculations performed in the present
work and the experimental data, as the distance from the nozzle increases.
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the dashed curves are the experimental data of [1]; the dot-and-dashed curves are the results calculated in [1].

The effect of the Mach number M∞ on the flow characteristics is illustrated in Fig. 4. In the initial part
(in the region of the first “barrel” at x ≈ 6), the transverse size of the jet is identical for all values of M∞. In the
main part, the greatest expansion of the jet is observed for M∞ = 0.05 (Fig. 4a). This result is validated by the
experiment [4], which showed that the length of the initial part of an underexpanded jet exhausting into a subsonic
cocurrent flow depends weakly on the value of M∞. It follows from Fig. 4b that the difference in the pressure
distributions becomes more pronounced (except for the first phase) with increasing Mach number of the cocurrent
flow.
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It follows from the results calculated for a sonic jet (Ma = 1.02, M∞ = 0.05, n = 1.62, and T0 = T∞ = 1)
that barrel shock waves are formed in the flow (Fig. 5a), which are classified as the central and the reflected shock
wave. The pressure behind the reflected shock wave and also behind the central shock wave is higher than the
ambient pressure, and the flow is again accelerated. It follows from Fig. 5b that a weak normal shock wave (Mach
disk) is formed in the flow. The flow at the periphery, behind the reflected shock wave, can be either completely
supersonic or partly subsonic. For instance, as it follows from numerical experiments, the flow is subsonic in the
first four barrels, the flow behind the fifth barrel is supersonic, and the region of the supersonic flow is located inside
the region of the subsonic flow at x < 12.

Thus, the exhaustion of a system of supersonic jets into a supersonic cocurrent flow and the exhaustion of
a single supersonic jet into a subsonic cocurrent flow are studied with the use of the numerical model constructed;
the effect of the Mach number of the cocurrent flow on the shock-wave structure is considered; the jet boundary is
demonstrated to have a barrel shape in the range 0.05 � M∞ � 2.00; a series of barrel shock waves is found to form
in the case of exhaustion of a sonic jet from the nozzle; the calculated results are found to be in good agreement
with available numerical and experimental data.
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